Our latest benchmark research into the market for location analytics software finds significant demand for location-related technology that can improve business outcomes and generate relevant information for various types of users. Location analytics is an extension of business analytics that can enhance the sophistication of data and processes by adding a geographic context.
Our latest benchmark research into the market for location analytics software finds significant demand for location-related technology that can improve business outcomes and generate relevant information for various types of users. Location analytics is an extension of business analytics that can enhance the sophistication of data and processes by adding a geographic context.
My last analyst perspective on this topic discussed the business value of insights based on geography and what organizations are doing to advance their efforts here. Our research also shows, however, that most still lack satisfaction and confidence in using the technology. Just 12 percent of all participants said they are very satisfied with the location information and analytics available in their organization. Further analysis shows that satisfaction increases with use of a dedicated application for location analytics: 71 percent of those are satisfied or very satisfied, substantially more than those using location analytics within a BI tool (22%); findings are similar for both B2B and B2C use. We find similar levels of confidence in the quality of location information: 15 percent of those using a dedicated application are very confident in their location analytics. Confidence in the reliability of such information is essential to more organizations adopting location analytics.
A range of technologies can be used for location analytics,
A look at the capabilities necessary for effective location analytics indicates why tools designed for the purpose get better results. More than three in five organizations said three basic capabilities are important: geographic representation of data, visual metrics associated with locations on a map, and selecting and analyzing locations on a map. One-half to one-third said interacting with maps and locations for further analysis, determining distance and drive time, and adding layers to maps are important. All of these basic capabilities are the building blocks for conducting specific analytics that can identify or recommend actions from the mashup of data about a location or to provide insights to guide decisions based on location-specific indicators.
Another technology approach used most frequently is business intelligence (BI). These tools are designed for reporting, creating dashboards and general access to analytic information such as metrics. BI tools and processes are established in both IT departments and lines of business, and location information can further enhance BI efforts. Nearly half (48%) of participants in this research ranked business intelligence interfaces as the most important to integrate with other enterprise software; custom interfaces was a distant second at only 13 percent. IT participants (55%) put BI first more often than did those in business (44%), and manufacturing (55%) ranked it higher than other industries. BI also is the application most often integrated with location analytics (45%), even more so in the largest companies by number of employees (56%) and by annual revenue (65%). In terms of planning and developing a strategy to use location analytics with other systems, most intend to integrate it with marketing automation (33%), sales force automation (30%) and enterprise content management (also 30%).
However, the research also finds impediments in using BI and location analytics together. Almost half (46%) of participating organizations said that integrating the two requires significant effort; another 16 percent said doing that is very difficult and requires substantial time or that they have no practical way to do it. On a positive note, integration of these two technologies has advanced significantly in the last several years, and it is easier to exchange data and add it to presentations. In addition, organizations that use business intelligence to conduct location analytics reported benefits, particularly improving the customer experience (21%) and gaining competitive advantage (20%). More than three in five companies that use BI with location analytics are very satisfied (17%) or satisfied (44%) with theinformation and analytics they have available. Thus the research clearly shows that integrating location information into business intelligence can deliver value.
Looking at location information in a broader sense we find many organizations using consumer mapping to plot data quickly, predominantly free software such as from Google (which 45% use) and Microsoft (31%). The research also reveals that while almost one-third (31%) have used these for enterprise needs, only 8 percent are very satisfied with them. Like personal productivity tools, these tools can help in individual tasks like driving instructions and plotting locations for quick geographic placement, but they lack task support and operational or specific analytical context that requires secure, integrated access to enterprise systems. Free and easy access makes them attractive, but they do not provide enough capabilities for skilled workers to use in complex business tasks.
As deployments grow, so does the need to integrate and adapt location analytics to other technologies. For example, one in five research participants said mobile technology is critical for improving location analytics, as did smaller numbers for cloud computing (15%), big data (15%) and collaboration (8%). Ways of deploying location analytics also are changing, as more organizations realize that buying and installing the software on-premises (which 35% prefer) is not the only approach; nearly as many (33%) want to access it on demand through software as a service (SaaS). Very large companies by number of employees (44%) and annual revenue (39%) have the strongest bias for on-demand deployment, as does manufacturing (43%) among industry sectors. Exploiting the full potential of big data investments, whether representing machine data or customer locations, is a prime example of where location analytics can help use data effectively. The research strongly suggests that location analytics will have a place in evolving business technology environments and that broader use of innovative technology will extend the value of this investment also.
Organizations of course expect to realize important benefits from software investments. The top five benefits being sought from location analytics are to improve the customer experience and customer satisfaction; gain competitive advantage; improve access to and value of existing information; improve organizational alignment and coordination; and deliver products and services faster. Organizations that use a dedicated technology focus most on gaining competitive advantage (21%) and delivering products and services faster (16%). Investment in a dedicated tool for location analytics can increase the value of an organization’s information and analytics, which improves with experience in using the technology. We recommend that organizations develop a location-specific component in their agenda for analytics. If you want to learn more on the value and potential of technology in location analytics our community is available to help with more depth in best practices and insights on this topic.