Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Data Mining Research Interview: Stuart Shulman
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Data Mining Research Interview: Stuart Shulman
Data Mining

Data Mining Research Interview: Stuart Shulman

SandroSaitta
SandroSaitta
5 Min Read
SHARE

shulman-profileToday on Data Mining Research, Stuart Shulman is answering our questions regarding his tool DiscoverText and his company Texifter. Stuart, thanks for sharing your work and taking some time to answer Data Mining Research questions.

shulman-profileToday on Data Mining Research, Stuart Shulman is answering our questions regarding his tool DiscoverText and his company Texifter. Stuart, thanks for sharing your work and taking some time to answer Data Mining Research questions.

Data Mining Research (DMR): Could you please introduce yourself to the readers of Data Mining Research?

More Read

R Finance Events Coming Soon
Segmentation is About Precision
DIALOG IBM and ILOG – the strategic perspective
5 Powerful Ways Retailers Can Leverage Big Data and Hadoop
Death of Consumer Segmentation – Ridiculous!

Stuart: I am a political science professor, software inventor, and garlic growing enthusiast who coaches U9 boys travel soccer…go Tigers! I am also the founder and CEO of Texifter, LLC, Director of the Qualitative Data Analysis Program (QDAP) at UMass Amherst, and the Editor-in-Chief of the Journal of Information Technology & Politics.

DMR: How did you come up with your company Texifter?

Stuart: I began work in this area in the fall of 1999, when a mid-level agency manager at the USDA’s National Organic Program shared 20,000 electronic public comments that were submitted in response to new proposed standard for organic food. The agency also wrote a letter to the NSF pledging support and collaboration as I undertook a pilot study of the viability of commercial-off-the-shelf (COTS) qualitative software for sorting large numbers of public comments. It was clear that agencies needed more powerful human language tools to meet the demands of electronic democracy, especially when the pulse of the nation was inflamed.

I was the founder and Director of the “eRulemaking Research Group,” which was formed at the January 2003 National Science Foundation-sponsored workshop titled “E-Rulemaking: New Directions for Technology and Regulation,” held at the John F. Kennedy School of Government, at Harvard University. Following the workshop, I lead a team that involved computer scientists Eduard Hovy (University of Southern California-Information Sciences Institute) and Jamie Callan (Carnegie Mellon University), as well as sociologist Stephen Zavestoski (University of San Francisco). With funding from the National Science Foundation (NSF), our group organized workshops, made presentations to federal agencies, NGOs, and private sector representatives, launched an eRulemaking text data testbed, and collaborated with five federal agencies (DOT, EPA, USDA, BLM, and USFS) in the submission of a successful 4-year proposal, funded by the NSF’s Digital Government program.

At a certain point, technology needs to spin out of university labs and into the private sector. This is that point. I am currently transitioning out of a fulltime academic role and into the private sector.

DMR: What is DiscoverText and who is it for?

Stuart: For Texifter customers, the need to mine social media data is seamlessly fulfilled through the deployment Application Programming Interfaces (APIs) in DiscoverText. These applications ease the collection, archiving and sorting of social media text, for example via the Twitter and the Facebook Graph APIs. Texifter offers a universal, multilingual capable, Web-based, user-centered text repository with extremely low barriers to entry in terms of cost, time & training. Texifter applications make it possible to crowd source data analysis in novel ways, leveraging peer relationships and Web-verifiable credentials. Ingesting millions of items from social media, email and electronic document repositories is easier, and advanced social search leveraging metadata, networks, credentials and filters will change the way users interact with diverse types of text data.

DMR: What is the most important lesson you have learned from text processing / mining?

Stuart: Computers cannot do a lot of important things with human language, but they are great for organizing, storing and reusing the work of humans to try and make computers do those things better and faster over time.

People like large text datasets; they are fun to play with and yield wonderful inferences when handled with care.

You can find more information about DiscoverText and Texifter.

 

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

Why the AI Race Is Being Decided at the Dataset Level
Why the AI Race Is Being Decided at the Dataset Level
Artificial Intelligence Big Data Exclusive
image fx (60)
Data Analytics Driving the Modern E-commerce Warehouse
Analytics Big Data Exclusive
ai for building crypto banks
Building Your Own Crypto Bank with AI
Blockchain Exclusive
julia taubitz vn5s g5spky unsplash
Benefits of AI in Nursing Education Amid Medicaid Cuts
Artificial Intelligence Exclusive News

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Rules and Process Management for Insurers

2 Min Read

SPSS launches PASW 13

3 Min Read

Investing in smarter infrastructure will create more than 949,000 new jobs in 2009

0 Min Read

A Quick Look Back at Partners 2008

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?