Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics
    How Data Analytics Can Help You Construct A Financial Weather Map
    4 Min Read
    financial analytics
    Financial Analytics Shows The Hidden Cost Of Not Switching Systems
    4 Min Read
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Data Integration Is the Schema in Between
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Integration Is the Schema in Between
Big Data

Data Integration Is the Schema in Between

MIKE20
MIKE20
3 Min Read
Image
SHARE

ImageThe third of the five biggest data myths debunked by Gartner is big data technology will eliminate the need for data integration.

ImageThe third of the five biggest data myths debunked by Gartner is big data technology will eliminate the need for data integration. The truth is big data technology excels at data acquisition, not data integration.

This myth is rooted in what Gartner referred to as the schema on read approach used by big data technology to quickly acquire a variety of data from sources with multiple data formats.

This is best exemplified by the Hadoop Distributed File System (HDFS). Unlike the predefined, and therefore predictably structured, data formats required by relational databases, HDFS is schema-less. It just stores data files, and those data files can be in just about any format. Gartner explained that “many people believe this flexibility will enable end users to determine how to interpret any data asset on demand. It will also, they believe, provide data access tailored to individual users.”

More Read

Big Data Is The Next Frontier For Innovation, Competition and Productivity
How Big Data Can Help Improve the U.S. Airport System
The Big Deal in Big Data is a Big Opportunity
The Future of Trusted Data Management: Striking a Balance between AI and Human Collaboration
Leveraging Big Data With State-Of-The-Art Business Dashboards

While it was a great innovation to make data acquisition schema-less, more work has to be done to develop information because, as Gartner explained, “most information users rely significantly on schema on write scenarios in which data is described, content is prescribed, and there is agreement about the integrity of data and how it relates to the scenarios.”

It has always been true that whenever you acquire data in various formats, it has to be transformed into a common format before it can be further processed and put to use. After schema on read and before schema on write is the schema in between.

Data integration is the schema in between. It always has been. Big data technology has not changed this because, as I have previously blogged, data stored in HDFS is not automatically integrated. And it’s not just Hadoop. Data integration is not a natural by-product of any big data technology, which is one of the reasons why technology is only one aspect of a big data solution.

Just as it has always been, in between data acquisition and data usage there’s a lot that has to happen. Not just data integration, but data quality and data governance too. Big data technology doesn’t magically make any of these things happen. In fact, big data just makes us even more painfully aware there’s no magic behind data management’s curtain, just a lot of hard work.

TAGGED:data integration
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

protecting patient data
How to Protect Psychotherapy Data in a Digital Practice
Big Data Exclusive Security
data analytics
How Data Analytics Can Help You Construct A Financial Weather Map
Analytics Exclusive Infographic
AI use in payment methods
AI Shows How Payment Delays Disrupt Your Business
Artificial Intelligence Exclusive Infographic
financial analytics
Financial Analytics Shows The Hidden Cost Of Not Switching Systems
Analytics Exclusive Infographic

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

Solving your application and data integration challenges

3 Min Read

Analytics: Not About Saving Time

7 Min Read

Converting Data into Decisions

5 Min Read

Referential Treatment – The Open Source Reference Data Trend

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?