Recall the nine steps to take as summarized in a prior post.
1) Gather current state Analytic Portfolio, and compile findings.
2) Determine the Analytic Operating Models in use.
3) Refine Critical Analytic Capabilities as defined.
4) Weight Critical Analytic Capability according to each operating model.
5) Gather user profiles and simple population counts for each form of use.
6) Gather platform characteristics profiles.
7) Develop platform and tool signatures.
8) Gather data points and align with the findings.
9) Assemble decision model for platform and tooling optimization.
Let’s start with examining the type and nature of the analytic operating models in use. Note an organization of any size will most likely use two or more of these models for very good reasons. I myself have seen all of these models employed at the same organization in my own practice. When moving on to the remaining steps it will become increasingly evident that having a keen understanding of the strategy, organization, technology footprint, and culture that drives the model adoption in question will become invaluable. First, let’s define our terms.
What is an operating model?
Wikipedia defines an operating model as an abstract representation of how an organization operates across a range of domains in order to
– Centralized Provisioning,
– Decentralized Analytics,
– Governed Data Discovery, and
– OEM/Embedded Analytics.
You may think what you will about Gartner I believe they have done a good job of grouping and characterizing the signatures around the four (4) operating models using fourteen (14) critical analytic capabilities to further decompose the form and function found within each. At a summary level the capabilities are grouped as follows.
– Traditional Styles of Analysis
– Analytic Dashboards and Content
– IT-Developed Reports and Dashboards
– Platform Administration
– Metadata Management
– Business User Data Mash-up
– Cloud Deployment
– Collaboration and Social Integration
– Customer Services
– Development and Integration
– Ease of Use
– Embedded Analytics
– Free Form Interactive Exploration
– Internal Platform Integration
– Mobile
Note: Detailed descriptions and characteristics of each of the fourteen critical capabilities can be found in step three (3) where I will refine the Gartner definitions of Critical Analytic Capabilities to add additional context.
Why is this important?
Each of the four models have very different needs influenced by strategy, footprint, and culture of the organization. Each optimization will have to recognize their differences and accommodate for them to remain meaningful. A set of tools and
- Structure is drawing boundaries for each analytic community, defining the horizontal mechanisms that ensure coordination and scale, and evaluating the resource levels that reflect the roles of the each. It should define the high-level organization chart if form follows function. If you look carefully, the clues to helping understand and classify each model are there. And note some overlap and redundancy is expected between each of the models.
- Accountability describes the roles and responsibilities of the organizational entities within each model and clarify how organizational units come together to make effective cross-enterprise analytic decisions. This is where a lot of organizational friction can occur resulting in undefined behaviors and unnecessary ambiguity.
- Governance refers to the configuration and cadence for discussing and resolving issues of strategy, resource allocation (including talent), performance management and other matters under each model. Note the wide variety of skills and competencies needed under each model and the potential for a rapid proliferation of tools and methods.
- Working describes how people collaborate across the seams that lie between different models. Behavior that’s consistent with intended values is critical to effective execution. Less understood by many, remember you really can’t do effective predictive or prescriptive analytic work without the descriptive or diagnostic data sets usually prepared by others under what is typically a very different operating model.
- Critical Capability can be determined by using the collection referred to above to balance people, processes and technology investment. The choice of operating models has implications for the type of talent or technology platform and tool optimization required. This collection is a suggestion only (and a good one at that), in step three I will refine this further to illustrate how to extend and refine this set of capabilities.
Step Two – Determine the operating models in use
In this step we are going to gather a deep understanding for the characteristics within each operating model, where they differ, and what common components and critical capability are shared. If you read the Gartner reference they consider metadata to be most heavily weighted in the Centralized Provisioning and Governed Discovery models. Based on my experience it is just as critical (and perhaps even more so) in the Decentralized model as well, especially in the Big Data world where tools like Alation, Adaptive, and Tamr are becoming essential to supporting discovery and self-service capability. The rest of this post will briefly describe the key characteristics for each operating model, their signature attributes, and highlight a few differences to help determine which operating models are employed.
Centralized Provisioning
– IT-Developed Reports and Dashboards
– Traditional Styles of Analysis
– Platform Administration
– Development and Integration
– Metadata Management
– Ease of Use
– Customer Services
Decentralized Analytics
– Analytic Dashboards and Content
– Free Form Interactive Exploration
– Business User Data Mashup and Modeling
– Metadata Management
– Ease of Use
– Customer Services
Governed Data Discovery
Governed data discovery can enable pervasive deployment of data discovery in the enterprise at scale without proliferating data discovery tooling sprawl. The expanded adoption of data discovery also requires analytic leaders to redesign analytics deployment models and practices, moving from an IT-centric to an agile and decentralized, yet governed and managed approach. This would include putting in place a prototype, pilot and production process in which user-generated content is created as a prototype. Some of these prototypes would need to be used in recurring analysis and promoted to a pilot phase. Successful pilots are promoted to production and operationalized for regular analysis as part of the system of record. Each step provides more rigor and structure in governance and Quality Assurance testing. Business user data mashup and modeling, administration, and metadata capabilities should be based understanding on the following characteristics which would differentiate a Governed model from the Decentralized Analytics model discussed earlier. Pursuing the following questions will help define the differences.
– Where are permissions enabled on business models?
– Who can access shared data connections and data sets?
– Who can create and publish data sets?
– Who can access shared user work spaces to publish visualizations?
– Is there shared metadata about usage, connections and queries ?
– Are usage, connections and queries monitored?
– Is there a information catalog available to enable discovery?
Eight of fourteen most important capabilities needed in this model would include:
– Analytic Dashboards and Content
– Free Form Interactive Exploration
– Business User Data Mashup and Modeling
– Internal Platform Integration
– Platform Administration
– Metadata Management
– Ease of Use
– Customer Services
Embedded Analytics
– Embedded (includes both developer and embedded advanced analytics)
– Cloud Deployment
– Development and Integration
– Mobile
– Ease of Use
– Customer Services
Putting It All Together
Believing form really does follow function it should be clear after this step what operating models are driving the platforms and tools that are enabling (or inhibiting) effective performance. Using the Gartner work and the refinements I have extended this with we can now see at a glance what core capabilities are most important to each model as illustrated in the following diagram. This will become a key input to consider when assembling the decision model and discovering platform and tooling optimization in the later steps.
Now that this step is completed it is time to turn our attention to further refining the critical analytic capabilities as defined and begin weighting each according to their relative importance to each operating model. It will become increasingly clear why certain critical capabilities essential to one model will be less important to another when this task is completed.
If you enjoyed this post, please share with anyone who may benefit from reading it. And don’t forget to click the follow button to be sure you don’t miss future posts. Planning on compiling all the materials and tools used in this series in one place, still unsure of what form and content would be the best for your professional use. Please take a few minutes and let me know what form and format you would find most valuable.
Suggested content for premium subscribers: Big Data Analytics - Unlock Breakthrough Results: Step Two (2) Operating Model Mind Map (for use with Mind Jet - see https://www.mindjet.com/ for more) Analytic Core Capability Mind Map Enterprise Analytics Mind Map Analytics Critical Capability Workbooks Analytics Critical Capability Glossary, detailed descriptions, and cross-reference Logical Data Model (XMI - use with your favorite tool) Reference Library with Supporting Documents
Tagged: Analytics, Big Data, Big Data Tools, Enterprise Architecture, Governance, Proven Practice