Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Modeling Visualization Macros
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Modeling Visualization Macros
Data Mining

Modeling Visualization Macros

Editor SDC
Editor SDC
7 Min Read
SHARE

I was creating some scoring models and decided to look for some macros.

Contents
  •  
  • SAS MACRO TO CALCULATE GAINS CHART WITH KS

1) Here is a nice SAS Macro from Wensui’s blog at http://statcompute.spaces.live.com/blog/

Its particularly useful for Modelling chaps, I have seen a version of this Macro sometime back which had curves also plotted but this one is quite nice too

2) I then found some ROC macros for SAS, and one document for SPSS

More Read

decision management
The Role of Decision Requirements in the Analytical Life Cycle
Banks, Risk Disclosure and Text Analytics
A Program for Catching Terrorists
Hidden Video Courses in Math, Science, and Engineering
“In the following Edge original essay, Taleb continues his examination of Black Swans, the highly…”

3) I found a R package for ROC curves

and compared all three

 

 

 

 


I was creating some scoring models and decided to look for some macros.

1) Here is a nice SAS Macro from Wensui’s blog at http://statcompute.spaces.live.com/blog/

Its particularly useful for Modelling chaps, I have seen a version of this Macro sometime back which had curves also plotted but this one is quite nice too

 

 

2) I then found some ROC macros for SAS, and one document for SPSS

3) I found a R package for ROC curves

and compared all three

 

SAS MACRO TO CALCULATE GAINS CHART WITH KS

%macro ks(data = , score = , y = );

options nocenter mprint nodate;

data _tmp1;
  set 
&data;
  where &score ~= . and y in (1, 0);
  random = ranuni(1);
  keep &score &y random;
run;

proc sort data = _tmp1 sortsize = max;
  by descending &score random;
run;

data _tmp2;
  set _tmp1;
  by descending &score random;
  i + 1;
run;

proc rank data = _tmp2 out = _tmp3 groups = 10;
  var i;
run;

proc sql noprint;
create table
  _tmp4 as
select
  i + 1       as decile,
  count(*)    as cnt,
  sum(&y)     as bad_cnt,
  min(&score) as min_scr format = 8.2,
  max(&score) as max_scr format = 8.2
from
  _tmp3
group by
  i;

select
  sum(cnt) into :cnt
from
  _tmp4;

select
  sum(bad_cnt) into :bad_cnt
from
  _tmp4;    
quit;

data _tmp5;
  set _tmp4;
  retain cum_cnt cum_bcnt cum_gcnt;
  cum_cnt  + cnt;
  cum_bcnt + bad_cnt;
  cum_gcnt + (cnt – bad_cnt);
  cum_pct  = cum_cnt  / &cnt;
  cum_bpct = cum_bcnt / &bad_cnt;
  cum_gpct = cum_gcnt / (&cnt – &bad_cnt);
  ks       = (max(cum_bpct, cum_gpct) – min(cum_bpct, cum_gpct)) * 100;

  format cum_bpct percent9.2 cum_gpct percent9.2
         ks       6.2;
  
  label decile    = ‘DECILE’
        cnt       = ‘#FREQ’
        bad_cnt   = ‘#BAD’
        min_scr   = ‘MIN SCORE’
        max_scr   = ‘MAX SCORE’
        cum_gpct  = ‘CUM GOOD%’
        cum_bpct  = ‘CUM BAD%’
        ks        = ‘KS’;
run;

title “%upcase(&score) KS”;
proc print data  = _tmp5 label noobs;
  var decile cnt bad_cnt min_scr max_scr cum_bpct cum_gpct ks;
run;    
title;

proc datasets library = work nolist;
  delete _: / memtype = data;
run;
quit;

%mend ks;    

data test;
  do i = 1 to 1000;
    score = ranuni(1);
    if score * 2 + rannor(1) * 0.3 > 1.5 then y = 1;
    else y = 0;
    output;
  end;
run;

%ks(data = test, score = score, y = y);

/*
SCORE KS              
                                MIN         MAX
  
DECILE    #FREQ    #BAD       SCORE       SCORE     CUM BAD%    CUM GOOD%        KS
   1       100      87         0.91        1.00      34.25%        1.74%      32.51
   2       100      78         0.80        0.91      64.96%        4.69%      60.27
   3       100      49         0.69        0.80      84.25%       11.53%      72.72
   4       100      25         0.61        0.69      94.09%       21.58%      72.51
   5       100      11         0.51        0.60      98.43%       33.51%      64.91
   6       100       3         0.40        0.51      99.61%       46.51%      53.09
   7       100       1         0.32        0.40     100.00%       59.79%      40.21
   8       100       0         0.20        0.31     100.00%       73.19%      26.81
   9       100       0         0.11        0.19     100.00%       86.60%      13.40
  10       100       0         0.00        0.10     100.00%      100.00%       0.00
*/

Its particularly useful for Modelling , I have seen a version of this Macro sometime back which had curves also plotted but this one is quite nice too.

Here is another example of a SAS Macro for ROC Curve  and this one comes from http://www2.sas.com/proceedings/sugi22/POSTERS/PAPER219.PDF

APPENDIX A
Macro
/***************************************************************/;
/* MACRO PURPOSE: CREATE AN ROC DATASET AND PLOT */;
/* */;
/* VARIABLES INTERPRETATION */;
/* */;
/* DATAIN INPUT SAS DATA SET */;
/* LOWLIM MACRO VARIABLE LOWER LIMIT FOR CUTOFF */;
/* UPLIM MACRO VARIABLE UPPER LIMIT FOR CUTOFF */;
/* NINC MACRO VARIABLE NUMBER OF INCREMENTS */;
/* I LOOP INDEX */;
/* OD OPTICAL DENSITY */;
/* CUTOFF CUTOFF FOR TEST */;
/* STATE STATE OF NATURE */;
/* TEST QUALITATIVE RESULT WITH CUTOFF */;
/* */;
/* DATE WRITTEN BY */;
/* */;
/* 09-25-96 A. STEAD */;
/***************************************************************/;
%MACRO ROC(DATAIN,LOWLIM,UPLIM,NINC=20);
OPTIONS MTRACE MPRINT;
DATA ROC;
SET &DATAIN;
LOWLIM = &LOWLIM; UPLIM = &UPLIM; NINC = &NINC;
DO I = 1 TO NINC+1;
CUTOFF = LOWLIM + (I-1)*((UPLIM-LOWLIM)/NINC);
IF OD > CUTOFF THEN TEST=”R”; ELSE TEST=”N”;
OUTPUT;
END;
DROP I;
RUN;
PROC PRINT;
RUN;
PROC SORT; BY CUTOFF;
RUN;
PROC FREQ; BY CUTOFF;
TABLE TEST*STATE / OUT=PCTS1 OUTPCT NOPRINT;
RUN;
DATA TRUEPOS; SET PCTS1; IF STATE=”P” AND TEST=”R”;
TP_RATE = PCT_COL; DROP PCT_COL;
RUN;
DATA FALSEPOS; SET PCTS1; IF STATE=”N” AND TEST=”R”;
FP_RATE = PCT_COL; DROP PCT_COL;
RUN;
DATA ROC; MERGE TRUEPOS FALSEPOS; BY CUTOFF;
IF TP_RATE = . THEN TP_RATE=0.0;
IF FP_RATE = . THEN FP_RATE=0.0;
RUN;
PROC PRINT;
RUN;
PROC GPLOT DATA=ROC;
PLOT TP_RATE*FP_RATE=CUTOFF;
RUN;
%MEND;

 

VERSION 9.2 of SAS has a macro called %ROCPLOT http://support.sas.com/kb/25/018.html

 

SPSS also uses ROC curve and there is a nice document here on that

http://www.childrensmercy.org/stats/ask/roc.asp

Here are some examples from R with the package ROCR from

http://rocr.bioinf.mpi-sb.mpg.de/

 

image

 

 

Using ROCR’s 3 commands to produce a simple ROC plot:
pred <- prediction(predictions, labels)
perf <- performance(pred, measure = “tpr”, x.measure = “fpr”)
plot(perf, col=rainbow(10))

The graphics are outstanding in the R package and here is an example

Citation:

Tobias Sing, Oliver Sander, Niko Beerenwinkel, Thomas Lengauer.
ROCR: visualizing classifier performance in R.
Bioinformatics 21(20):3940-3941 (2005).

 

Share/Save/Bookmark

 

TAGGED:rsasspssvisualization
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data mining to find the right poly bag makers
Using Data Analytics to Choose the Best Poly Mailer Bags
Analytics Big Data Exclusive
data science importance of flexibility
Why Flexibility Defines the Future of Data Science
Big Data Exclusive
payment methods
How Data Analytics Is Transforming eCommerce Payments
Business Intelligence
cybersecurity essentials
Cybersecurity Essentials For Customer-Facing Platforms
Exclusive Infographic IT Security

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Tabled: Is R the Solution?

12 Min Read

The impact of the drug war in Mexico

3 Min Read

Business Intelligence or Business Analytics?

3 Min Read

More Than Pretty Pictures: Visualizing Insight

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?