Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Ten ways to build a wrong scoring model
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Ten ways to build a wrong scoring model
Data MiningPredictive Analytics

Ten ways to build a wrong scoring model

Editor SDC
Editor SDC
3 Min Read
SHARE

Below are some ways to build a wrong scoring model. The author doesn’t make any guarantee that if your modeling team uses one of them they will still get a correct model.

1) Over-fit the model to the sample. This over-fitting can be checked by taking a random sample again and fitting the scoring equation and comparing predicted conversion rates versus actual conversion rates. The over-fit model does not rank order: deciles with lower average probability may show equal or more conversions than deciles with higher probability scores.

2) Choose non-random samples for building and validating the scoring equation. Read over-fitting above.

3) Use Multicollinearity without business judgment to remove variables that may make business sense. This usually happens a few years after you studied — and have now forgotten — multicollinearity… 

More Read

Data Catalog
Moving to Self-Serve Analytics? You Need a Data Catalog
Can Smart Data Ensure Cybersecurity and Data Protection?
We Need Dustin Hoffman Again – Now to hear “Statistics” not “Plastics”
Predictive Analytics, Present and Future: Interview with Dr. Eric Siegel
Tipping Points

Below are some ways to build a wrong scoring model. The author doesn’t make any guarantee that if your modeling team uses one of them they will still get a correct model.

1) Over-fit the model to the sample. This over-fitting can be checked by taking a random sample again and fitting the scoring equation and comparing predicted conversion rates versus actual conversion rates. The over-fit model does not rank order: deciles with lower average probability may show equal or more conversions than deciles with higher probability scores.

2) Choose non-random samples for building and validating the scoring equation. Read over-fitting above.

3) Use Multicollinearity without business judgment to remove variables that may make business sense. This usually happens a few years after you studied — and have now forgotten — multicollinearity.

If you don’t know the difference between Multicollinearity and Heteroscedasticity, this could be the real deal-breaker for you

4) Using legacy codes for running scoring, usually with step-wise forward and backward  regression. This usually happens on Fridays and when you’re in a hurry to make models.

5) Ignoring signs or magnitude of parameter estimates (that’s the output or the weightage of the variable in the equation).

6) Not knowing the difference between Type 1 and Type 2 errors, especially when rejecting variables based on P value.

7) Excessive zeal in removing variables. Why? Ask yourself this question every time you are removing a variable.

8) Using the wrong causal event (like mailings for loans) for predicting the future with scoring model (for mailings of deposit accounts). Or using the right causal event in the wrong environment (rapid decline/rise of sales due to factors not present in model like competitor entry/going out of business, oil prices, credit shocks sob sob sigh).

9) Over-fitting.

10) Learning about creating models from blogs and not  reading and refreshing your old statistics textbooks.

Share/Save/Bookmark

TAGGED:scoring models
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

Why the AI Race Is Being Decided at the Dataset Level
Why the AI Race Is Being Decided at the Dataset Level
Artificial Intelligence Big Data Exclusive
image fx (60)
Data Analytics Driving the Modern E-commerce Warehouse
Analytics Big Data Exclusive
ai for building crypto banks
Building Your Own Crypto Bank with AI
Blockchain Exclusive
julia taubitz vn5s g5spky unsplash
Benefits of AI in Nursing Education Amid Medicaid Cuts
Artificial Intelligence Exclusive News

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

More Ways to get a Scoring Model wrong

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?